Inclusion of Dominance Effects in the Multivariate GBLUP Model

نویسندگان

  • Jhonathan Pedroso Rigal dos Santos
  • Renato Coelho de Castro Vasconcellos
  • Luiz Paulo Miranda Pires
  • Marcio Balestre
  • Renzo Garcia Von Pinho
چکیده

New proposals for models and applications of prediction processes with data on molecular markers may help reduce the financial costs of and identify superior genotypes in maize breeding programs. Studies evaluating Genomic Best Linear Unbiased Prediction (GBLUP) models including dominance effects have not been performed in the univariate and multivariate context in the data analysis of this crop. A single cross hybrid construction procedure was performed in this study using phenotypic data and actual molecular markers of 4,091 maize lines from the public database Panzea. A total of 400 simple hybrids resulting from this process were analyzed using the univariate and multivariate GBLUP model considering only additive effects additive plus dominance effects. Historic heritability scenarios of five traits and other genetic architecture settings were used to compare models, evaluating the predictive ability and estimation of variance components. Marginal differences were detected between the multivariate and univariate models. The main explanation for the small discrepancy between models is the low- to moderate-magnitude correlations between the traits studied and moderate heritabilities. These conditions do not favor the advantages of multivariate analysis. The inclusion of dominance effects in the models was an efficient strategy to improve the predictive ability and estimation quality of variance components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Model Methods for Genomic Prediction and Variance Component Estimation of Additive and Dominance Effects Using SNP Markers

We established a genomic model of quantitative trait with genomic additive and dominance relationships that parallels the traditional quantitative genetics model, which partitions a genotypic value as breeding value plus dominance deviation and calculates additive and dominance relationships using pedigree information. Based on this genomic model, two sets of computationally complementary but m...

متن کامل

Including Dominance Effects in the Genomic BLUP Method for Genomic Evaluation

We evaluated the performance of GBLUP including dominance genetic effect (GBLUP-D) by estimating variances and predicting genetic merits in a computer simulation and 2 actual traits (T4 and T5) in pigs. In simulation data, GBLUP-D explained more than 50% of dominance genetic variance. Moreover, GBLUP-D yielded estimated total genetic effects over 1.2% more accurate than those yielded by GBLUP. ...

متن کامل

Estimating additive and dominance variances for complex traits in pigs combining genomic and pedigree information.

Knowledge of dominance effects should improve ge-netic evaluations, provide the accurate selection of purebred animals, and enable better breeding strategies, including the exploitation of het-erosis in crossbreeds. In this study, we combined genomic and pedi-gree data to study the relative importance of additive and dominance genetic variation in growth and carcass traits in an F2 pig populati...

متن کامل

Assessment of Genetic Heterogeneity in Structured Plant Populations Using Multivariate Whole-Genome Regression Models.

Plant breeding populations exhibit varying levels of structure and admixture; these features are likely to induce heterogeneity of marker effects across subpopulations. Traditionally, structure has been dealt with as a potential confounder, and various methods exist to "correct" for population stratification. However, these methods induce a mean correction that does not account for heterogeneit...

متن کامل

A Comparison of the Sensitivity of the BayesC and Genomic Best Linear Unbiased Prediction(GBLUP) Methods of Estimating Genomic Breeding Values under Different Quantitative Trait Locus(QTL) Model Assumptions

The objective of this study was to compare the accuracy of estimating and predicting breeding values using two diverse approaches, GBLUP and BayesC, using simulated data under different quantitative trait locus(QTL) effect distributions. Data were simulated with three different distributions for the QTL effect which were uniform, normal and gamma (1.66, 0.4). The number of QTL was assumed to be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016